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Background

The effects of heat and cold on human body

> Temperatures have direct and indirect effects on human health.

Quentin Guibert @ ]

> Hot and cold periods in temperate regions (Beker et al., 2018).

> Concept of MMT (Minimum Mortality Temperature) with spatial heterogeneity indicating
different adaptation levels to temperatures (Yin et al., 2019).

> Many epidemiological studies estimated the temperature-attributable deaths.

> Concept of attributable mortality — Require daily or weekly mortality data (Gasparrini, 2014;
Vicedo-Cabrera et al., 2019).
> Heatwaves  and cold waves \ during the 21st century (IPCC, 2023).

BUT, complex projections with a lot of uncertainty, heterogeneity and combined effects due
to human activity.
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Problem set-up

Integrate climate change effects in mortality models

Climate-related mortality in actuarial and demographic literature

> Largely unexplored in this actuarial literature, except some papers, e.g. Seklecka et al. (2017).

Quentin Guibert @ ]

> Most stochastic mortality models are based on past dynamics (Lee and Carter, 1992; Barrieu
et al., 2012; Dowd et al., 2020), e.g. the Lee-Carter model

In(My i) = g + Lokt + €t

o Specificity of temperature-attributable deaths

> The intensity of shocks is likely to be affected by climate change.
> Observed temperature-related shocks are punctual and generally non-catastrophic.

> They may be offset throughout the year — need to incorporate daily or weekly data.
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Introduction

> Coupling a multi-population mortality model with a climate epidemiology model.

Quentin Guibert [ ]

To our knowledge, this is one of the first paper where a mortality model and an climate
epidemiology model are combined.
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Introduction

> Coupling a multi-population mortality model with a climate epidemiology model.

Quentin Guibert [ ]

> Measuring the effect of future temperatures on mortality trend, differentiating by sex and age.

To our knowledge, this is one of the first paper where a mortality model and an climate
epidemiology model are combined.
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Introduction

> Coupling a multi-population mortality model with a climate epidemiology model.

Quentin Guibert [ ]

> Measuring the effect of future temperatures on mortality trend, differentiating by sex and age.
> Integrating the uncertainty associated with future temperatures.

To our knowledge, this is one of the first paper where a mortality model and an climate
epidemiology model are combined.
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Introduction

> Coupling a multi-population mortality model with a climate epidemiology model.

Quentin Guibert [ ]

> Measuring the effect of future temperatures on mortality trend, differentiating by sex and age.
> Integrating the uncertainty associated with future temperatures.
> Measuring regional sensitivity differences.

To our knowledge, this is one of the first paper where a mortality model and an climate
epidemiology model are combined.
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Modeling framework

Two causes of mortality

Notation and basic assumptions

> ugz, Ei, 't and D(gt) represent, respectively, the force of mortality, observed exposure to risk,
and observed number of deaths at age = and calendar year t.

Quentin Guibert [ ]

> Two populations g € {female, male} in Metropolitan France.

> Crude central death rate of mortality m(g) = a(:gt)/E;gt)
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Modeling framework

Two causes of mortality

Notation and basic assumptions

> Mgz, Ei, 't and D(gt) represent, respectively, the force of mortality, observed exposure to risk,
and observed number of deaths at age = and calendar year t.

Quentin Guibert [ ]

> Two populations g € {female, male} in Metropolitan France.

> Crude central death rate of mortality m(g) = a(:gt)/E;gt)

Deaths attributable to temperatures

> Decomposition into two components

Dif,? = 59(5572 + DY) = o) (g) + i)

mti

where 5;92 and Dg(gg} are the number of deaths not attributable and attributable to
temperature, respectively.
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Modeling framework

A multi-population model with temperature effects

> Consider the two-populations Li and Lee (2005) model for central deaths rates not
attributable to temperature effects

In (%)) = Ay + B K, + a9 + BOr(.

Quentin Guibert [ ]
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Modeling framework

A multi-population model with temperature effects

> Consider the two-populations Li and Lee (2005) model for central deaths rates not
attributable to temperature effects

In (%)) = Ay + B K, + a9 + BOr(.

Quentin Guibert [ ]

> This choice is compatible with our data, but other models are possible.
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Modeling framework

A multi-population model with temperature effects

> Consider the two-populations Li and Lee (2005) model for central deaths rates not
attributable to temperature effects

In (%)) = Ay + B K, + a9 + BOr(.

> This choice is compatible with our data, but other models are possible.
> ldentifiability constraints

Y Ki=0and ) BI=1,

teT, zeX
Dk =0and Y (B)? =1, forgeg.
teT, TeX
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Modeling framework

A multi-population model with temperature effects

> Consider the two-populations Li and Lee (2005) model for central deaths rates not
attributable to temperature effects

x,t

In (%)) = Ay + B K, + a9 + BOr(.

> This choice is compatible with our data, but other models are possible.
> ldentifiability constraints

Y Ki=0and ) BI=1,

teT, reX
Z mgg) =0 and 2 (5§SQ))2 =1 forgeg.
teT, zeX

> Time series model with coherence assumption
K, =0+ K;_1 + e — RWD with drift
feﬁg) =9 4 d)(g)/fgg_)l + rig) — AR(1) with drift and [¢9)] < 1.

Error terms are white noise with a mean of zero and a variance-covariance matrix X.
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Modeling framework

A multi-population model with temperature effects

Poisson assumption and temperature-attributable deaths

> Poisson assumption for the number deaths not attributable to temperature

Quentin Guibert [mmm |

BY) ~ pois (E&)m)) .

)
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Modeling framework

A multi-population model with temperature effects

Poisson assumption and temperature-attributable deaths

> Poisson assumption for the number deaths not attributable to temperature

BY) ~ pois (E&)m)) .

Quentin Guibert [mmm |

)

> Knowing the attributable fraction AF 92, we also have a Poisson formulation for D(gt) as

:1:7
z,t Tzt x,

DY) ~ Pois (B4 1)),

w)

-1
where ng)gt) = (1 — AF(92> .
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Modeling framework

A multi-population model with temperature effects

Poisson assumption and temperature-attributable deaths

> Poisson assumption for the number deaths not attributable to temperature

BY) ~ pois (E&)m)) .

)

Quentin Guibert [mmm |

> Knowing the attributable fraction AF 92, we also have a Poisson formulation for D(gt) as

117

DY) ~ Pois (B4 1)),

z,t Tzt x,

where T\ — (1 - AFEC“Q)?I.

x,t

x,t tx,t

> We consider In (E(Q)T(g)) as an offset term.
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Modeling framework

A multi-population model with temperature effects

Poisson assumption and temperature-attributable deaths

> Poisson assumption for the number deaths not attributable to temperature

BY) ~ pois (E&)m)) .

)

Quentin Guibert [mmm |

> Knowing the attributable fraction AF g), we also have a Poisson formulation for D(g) as
g t it

117

DY) ~ Pois (B4 1)),

z,t Tzt x,

where T\ — (1 - AFEC“Q)?I.

x,t

x,t tx,t

> We consider In (E(Q)T(g)) as an offset term.

> The model is estimated as a Poisson GLM through maximum likelihood estimation.
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Modeling framework

Effect of temperature: the DLNM model

The distributed lag non-linear model (DLNM) model for daily mortality
> We partition the age range X into K € N* distinct strata X, = [z5_1,2x),k € {1,..., K}.
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Modeling framework

Effect of temperature: the DLNM model

The distributed lag non-linear model (DLNM) model for daily mortality
> We partition the age range X into K € N* distinct strata X, = [z5_1,2x),k € {1,..., K}.

> For each day d € D* = {1,2,...,365,(366)} of year t, let D,(fz’d be the number of daily
deaths aggregated on X.
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Modeling framework

Effect of temperature: the DLNM model

The distributed lag non-linear model (DLNM) model for daily mortality
> We partition the age range X into K € N* distinct strata X, = [z5_1,2x),k € {1,..., K}.

> For each day d € D* = {1,2,...,365,(366)} of year t, let D,(fz’d be the number of daily
deaths aggregated on X.

> We consider a quasi-Poisson regression model with a log-link function

(ED) 1) =0 + s(0ar. L:0) + 20160 + Y. he(zas: ¢, ke f{l,..., K},
teTy,

where:
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Modeling framework

Effect of temperature: the DLNM model

The distributed lag non-linear model (DLNM) model for daily mortality
> We partition the age range X into K € N* distinct strata X, = [z5_1,2x),k € {1,..., K}.

> For each day d € D* = {1,2,...,365,(366)} of year t, let D,ggzd be the number of daily
deaths aggregated on X.

> We consider a quasi-Poisson regression model with a log-link function

(ED) 1) =0 + s(0ar. L:0) + 20160 + Y. he(zas: ¢, ke f{l,..., K},
teTy,

where:

» s(9q,, L; 0,(;”) is a cross-basis non-linear function, capturing the cumulated effect of the daily
mean temperature 1, ; over a maximum of L days,
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Modeling framework

Effect of temperature: the DLNM model

The distributed lag non-linear model (DLNM) model for daily mortality
> We partition the age range X into K € N* distinct strata X, = [z5_1,2x),k € {1,..., K}.
> For each day d € D* = {1,2,...,365,(366)} of year t, let D,ggzd be the number of daily
deaths aggregated on X.

> We consider a quasi-Poisson regression model with a log-link function

(ED) 1) =0 + s(0ar. L:0) + 20160 + Y. he(zas: ¢, ke f{l,..., K},
teTy,

where:
» s(9q,, L; 0,(;”) is a cross-basis non-linear function, capturing the cumulated effect of the daily
mean temperature 1, ; over a maximum of L days,
» 214 is the day of the week indicator,
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Modeling framework

Effect of temperature: the DLNM model

The distributed lag non-linear model (DLNM) model for daily mortality
> We partition the age range X into K € N* distinct strata X, = [z5_1,2x),k € {1,..., K}.

> For each day d € D* = {1,2,...,365,(366)} of year t, let D,(fz’d be the number of daily
deaths aggregated on X.

Quentin Guibert [mmm |

> We consider a quasi-Poisson regression model with a log-link function

(ED) 1) =0 + s(0ar. L:0) + 20160 + Y. he(zas: ¢, ke f{l,..., K},
teTy,

where:
» s(9q,, L; 0,(;”) is a cross-basis non-linear function, capturing the cumulated effect of the daily
mean temperature 1, ; over a maximum of L days,
» 214 is the day of the week indicator,
 hy(za; C,(cgt)) are natural cubic B-splines for the day of the year variable to control the residual
effect of séasonality.
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Calibration

Estimating the DLNM model

For each stratum X}, we consider a bi-dimensional spline function s(-,-) as (ignoring k)

Quentin Guibert [mmm |

Z,Ed,L 0

Vz U1

HM@

w(zg_1,1;0) =w, 0= |1, 1, ®R.qa |O| C®1,, 0,
—_—— —

exposure dimension lag dimension

where f - w is a cross-basis function, i.e. the bi-dimensional function space obtained by combining
two independent sets of basis functions, and 0 a vector of parameters.

> Hyperparameters:
> exposure-response: natural cubic B-spline with 3 internal knots (10-75-90th perc. daily avg.
temp.)
» lag-response: natural cubic B-spline with an intercept and 3 internal knots.
» Lag L of 21 days.
> Model estimation through MLE (Wood, 2006). The variance-covariance matrix V[@] is
estimated through a parametric bootstrap technique (Vicedo-Cabrera et al., 2019).
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Calibration

Excess of mortality and attributable risk

Main indicators estimated on the calibration period

> The estimated attributable fraction (Gasparrini and Leone, 2014)

Quentin Guibert [mmm |

L
—(9) ~
AFljt’d =1—exp (— E f- w(ﬁd’hl;B,(f))).

=0
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Calibration

Excess of mortality and attributable risk

Main indicators estimated on the calibration period

> The estimated attributable fraction (Gasparrini and Leone, 2014)
~(9) S 5
AFiqa=1—exp <— Z frw(@ay,l; 9;E;g))>~
1=0

> The estimated death counts attributable to temperature for each d and aggregated over a
subperiod D; € D* for x € X}

Y N IR Y T R =)
ng,t,d =AF; ;4% ﬁ» D:ng,t = Z Dgit,d]l{debt}
=0 deDy;
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Calibration

Excess of mortality and attributable risk

Main indicators estimated on the calibration period

> The estimated attributable fraction (Gasparrini and Leone, 2014)

L
—(9) ~
AFljt’d =1—exp (— E f- w(ﬁd’hl;B,(f))).

=0

> The estimated death counts attributable to temperature for each d and aggregated over a
subperiod D; € D* for x € X}

(9)
ﬁ(g) _,&I\:(g) < Drg,,t7d+l f)(g) _ ﬁ(g) 1
wtd = Nkt X ) zt = Z ,t,d " {deD¢}

=0 L+1 deDy;

> The estimated total attributable fraction and the temperature adjustment over D,
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Quentin Guibert [mmm |
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Calibration

The mortality model

Adjusted exposure and death counts data

€= {ET (D) weXte T, geG), C={D¥)veX teT,geg}.

Calibration steps (Li, 2013; Robben et al., 2022)

Estimate A, B.., K: from the Poisson log-likelihood under identifiability constraints

max Z Z (D3EE In(m3%F) — E25Fmi%E),

t
Ag,By, K e
BT peX teT,

where D228 = DU) + p{) | E288 = EY)TU)(D*) + ESVTY (DY) and %8 = exp (As + BoKy).
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Calibration

The mortality model

Adjusted exposure and death counts data

€= {ET (D) weXte T, geG), C={D¥)veX teT,geg}.

Quentin Guibert [mmm |

Calibration steps (Li, 2013; Robben et al., 2022)

Estimate A, B.., K: from the Poisson log-likelihood under identifiability constraints

LM D) D (DI () — EinE),
TEX teTy
where D228 = DU) + p{) | E288 = EY)TU)(D*) + ESVTY (DY) and %8 = exp (As + BoKy).

Estimate the sex-specific parameters from the Poisson log-likelihood under identifiability constraints

vgeg, >, (P m@e) - B

TEX tETy

(
x, x,t

)7(9) (*) 53, (9)
max f (D*)m ,t).
al® 69 k(9 z
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Calibration

Time series model

> Temperature dynamics are exogenous information from climate models.

> Time series model is as follow
Y, =" +®Y, , + E

where
K ) 1 0 0 €t
Y, = /{gf) X=|cD |, &=(0 ¢ 0 and E; = T,Ef)
Kﬁm) c(m) 0 0 o¢m Tgm)

> The parameters T, ® and X are estimated through maximum likelihood based on the
R-package MultiMoMo (Antonio et al., 2022).
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Forecast

Central deaths rates

Simulation procedure for each year ¢ € Tyf°'

)

Simulate ﬁzgt based on vector Y;.

Quentin Guibert [ |
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Forecast

Central deaths rates

Simulation procedure for each year ¢ € Tyf°'

)

Simulate ﬁzgt based on vector Y;.

Quentin Guibert [ |

Select a daily temperature trajectory (5d7t) along a climate scenario.
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Forecast

Central deaths rates

Simulation procedure for each year ¢ € 7,'yf°'

)

Simulate ﬁzgt based on vector Y;.

Quentin Guibert [ |

Select a daily temperature trajectory (5d7t) along a climate scenario.

Compute the predicted attributable fraction ﬂ:g;t for each day d.
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Forecast

Central deaths rates

Simulation procedure for each year ¢ € T

Simulate ﬁzi Z based on vector Y;.

Quentin Guibert [ |

Select a daily temperature trajectory (5d7t) along a climate scenario.

Compute the predicted attributable fraction ﬂ:g‘)“ for each day d.

Project central mortality rates with temperature effects accumulated over the period Dx

(9) ~=(9)

(g> _
| L+ Z ‘“(g) dAF o a (L= AF 0 ) gep,y
deDy

=
=My,

where w( ) D(gz d/D(g)

¢, @ weight to be chosen, for the distribution of death counts not attributable to
temperature
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Case study

Temperature data

Quentin Guibert [ |

- ene o
[ > Calibration period: 7, = {1980, ...,2019}. 2 w0 2
> Extract average daily temperatures of 14 cities = e o
from the GHCN database (NOAA). " .
> Compute average daily temperatures for - F/\,A\
Metropolitan France. anl -

-10 0 10 20 30
Avg. Temperature [C]

Figure: Distribution of average daily temperatures for each
month of the year.

14 stations are located around Bordeaux, Brest, Caen, Clermont-Ferrand, Dijon, Lille, Lyon, Marseille, Nantes, Paris,
Perpignan, Strasbourg, Toulouse and Tours.
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Case study

Mortality data
Annual data from the HMD
> Calibration period: 7, = {1980,...,2019}.
> Age range: X = {0,...,105}.

Quentin Guibert [ |

Daily data from the Quetelet-Prodego Diffusion network (INSEE, 2020)

Males Females

» 0
#Avg. Temperature [C]
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Figure: Representation of the daily death count according to the average daily temperature in France for women and mer16/31



Estimation

Temperature-mortality association with the DLNM
The DLNM estimation on 1980-2019
> K = 4 age buckets (0-64, 65-74, 75-84, and 85+) and split by sex.
> Hyperparameters are selected according to the literature.
> Extreme cold and hot: [0%, 2.5%)] and [97.5%, 100%] quantiles.
> Moderate cold and hot: ]2.5%, MMT[ and |MMT,97.5%] quantiles.
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Estimation

Temperature-mortality association with the DLNM

Quentin Guibert [ |

Temperatue (€]

Figure: Cumulative relative risk of mortality over a 21-day period in Metropolitan France calculated for the years 1980-2019
for women (red) and men (blue) (95% Cl with 1,000 Monte Carlo simulations)
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Estimation

The Li-Lee model
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Figure: Estimated parameters (Al, B’I, f(\t, &if), Bif), Eif), &(zm) , E;m), Rim)) of the Li-Lee model for the calibration

period 1980-2019 and ages between 0-105 for the entire population of Metropolitan France (Common), females (Female), and

males (Male).
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Simulation

Forecasting mortality

> Projection of parameters K., ng), and Egm) over the period 2020-2100.

> For both the original Li-Lee model and the Li-Lee model with ajusted exposure to risk.

Quentin Guibert [ |

W0 e K

z 0 -10

G -2

£

-3
Calibration data -1 20
o) | Adiusted exposure torisk
— Original Li-Lee model
1975 2000 2025 2050 2075 2100 1975 ~ 2000 2025 2050 2075 2100 1975 2000 2025 2050 2075 2100

Years

Figure: Projection of trend parameters i(\t, /’%sf), and figm) over the period 2020-2100 for the Li-Lee models with original
exposure to risk and ajusted exposure to risk.
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Simulation

Climate scenarios

> 12 climate models from the DRIAS — uncertainty about future temperatures.
> 3 Representative Concentration Pathway (RCP): RCP2.6, RCP4.5 and RCP8.5.
> 8 km resolution grid (SAFRAN) — 14 cities — average daily temperatures for Metropolitan

France.

GCM RCM RCPs available Period
CNRM-CM5 ALADING63 RCP8.5, RCP4.5, RCP2.6  2006-2100
MPI-ESM CCLM4-8-17 RCP8.5, RCP4.5, RCP2.6  2006-2100
HadGEM?2 RegCM4-6 RCP8.5, RCP2.6 2006-2099
EC-EARTH RCA4 RCP8.5, RCP4.5, RCP2.6  2006-2100
IPSL-CM5A WRF381P RCP8.5, RCP4.5 2006-2100
NorESM1 REMO2015 RCP8.5, RCP2.6 2006-2100
MPI-ESM REMO2009 RCP8.5, RCP4.5, RCP2.6  2006-2100
HadGEM?2 CCLM4-8-17 RCP8.5, RCP4.5 2006-2099
EC-EARTH RACMO22E RCP8.5, RCP4.5, RCP2.6  2006-2100
IPSL-CM5A RCA4 RCP8.5, RCP4.5 2006-2100
CNRM-CM5 RACMO22E RCP8.5, RCP4.5, RCP2.6  2006-2100
NorESM1 HIRHAMS v3 RCP8.5, RCP4.5 2006-2100
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Simulation

Simulating temperatures effects
> Projection for each climate model and RCP scenario.

> Compute AF (Dt) and aggregate by age and sex for facilitate visual analysis
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Figure: Temperature attributable fraction in Metropolitan France - Years 2020-2100 for both women and men. 22/31



Simulation

Impact of location - Perpignan
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Figure: Temperature attributable fraction in Perpignan, simulated for the years 2020-2100.
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Simulation

Life-years lost due to temperature

> The total mortality rates attributable and non attributable to temperature effects

Quentin Guibert [ 8 |

@(f’z =1—exp (—ﬁ@ﬁi), (?igz =1—exp (ﬁzwgz),

> Life expectancy lost (or gained) due to temperatures for a person of age x at date ¢ due to
the temperature effect

w & N = g)
Aey; = l (1 - qx’jj) -11 (1 - qx?j)]'
j=0
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Simulation

Life-years lost due to temperature

Aleffects

Quentin Guibert [EE— |

Lte expenctancy loss

Extreme hot

Lte expenciancy loss

Figure: Life expectancy at birth lost in Metropolitan France, simulated for the years 2020-2100 for both women and men. We
present both the loss related to all temperature effects and extreme hot effects only.
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Simulation

Life-years lost due to temperature - Perpignan

Aleffects

T e SO
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Lte expenciancy loss

Extreme hot

Lte expenciancy loss

Figure: Life expectancy at birth lost in Perpignan, simulated for the years 2020-2100 for both women and men. We present
both the loss related to all temperature effects and extreme hot effects only.
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Conclusion

Main results

> A multi-population mortality model incorporating the effect of temperature changes on
mortality.

> Assess gains or losses in projected life expectancy related to temperatures.

Quentin Guibert [EEE— )

> Attenuation of the effect of cold temperature in RCP8.5 scenario.

> Increase of the effect of hot temperature in RCP8.5 scenario, especially in southern
departments of France from 2050.

Limitations and extensions

> Strong assumption: we assume that populations do not adapt to their local environment:

» Better (or worse) acclimatization to hot and cold temperatures.
» House insulation, development of air conditioning, physiological process or immunity.
» Prevention.

> Integrate other environmental variables (air pollution, the heat index, ...).

> Consider other regions, especially Southern Europe or the MENA region.
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Thank you for your attention!
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Background

Temperature-attributable mortality

Figure: Attributable fraction anomalies by RCP scenario (2070-2099) (Martinez-Solanas et al., 2021)
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Modeling framework

Literature on mortality models with jumps

The Liu and Li (2015) model

ln(ﬁlr,t) = Qg + ﬂm/’it + A\v/ '].r./ + €zt

where Ny is a Bernoulli variable and J, ; is the intensity of gaussian mortality jumps.
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Modeling framework

Literature on mortality models with jumps

The Liu and Li (2015) model

ln(ﬁlr,t) = Qg + ﬂm/’it + A\v/ '].r./ + €zt

where Ny is a Bernoulli variable and J, ; is the intensity of gaussian mortality jumps.

Integrating vanishing jump effects (Goes et al., 2023)
Bayesian formulation with gradually vanishing jump effects

(Mg ) =  + Batis + B T0 + €as
Ji = adi1 + NiYy,

where Y;, N; and k; are random variables defined with a prior.



Modeling framework

Literature on mortality models with jumps

'§ Catastrophe and volatility regime (Robben and Antonio, 2024)

é Jumps for the residuals of the mortality improvement rates of population ¢

[

| 2= o — )y — () —Inpff) )
ZL) = BV 1 €,

where Y; is null or a normal variable depending on the state of a Markov chain.

o Specificity of temperature-attributable deaths

> The intensity of shocks is likely to be affected by climate change.
> Observed temperature-related shocks are punctual and generally non-catastrophic.

> They may be offset throughout the year — need to incorporate daily or weekly data.
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The DLNM model

General framework

The DLNM models the relationship between a time series (Yy,d € T) for a set of indices T

p(E

uMg

P
xd,ij 0 + Z 'U'd mv'Vm) Z hp(zd,p§Cp)7
m=1 p=1

> p(-) is a monotonic link function, e.g. the log-link function for count data.

> each function s;(-,-) is a smooth bi-dimensional function that capture delayed effects of past
exposures with a lag L € N and a bi-dimensional cross basis function f - w

L L
s(xq, L;0) = J frw(zg—,1;0)dl ~ Z frw(zg—,1;0).
0 1=0
> 7, (+) are smooth univariate functions that capture the effects of confounding variables wg .,

> hy(-) are smooth univariate functions of categorical time variables that control residual
seasonal effects.
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Figure: Probability density of the number of deaths by month of the year

Mortality data



Case study

Climate scenarios

Quentin Guibert

Figure: Projection of temperatures and heatwaves by RCP scenario in Metropolitan France over the period 2020-2100.

>
£
©
8
£
S
=
c
6
()
00
[=
T
=
O
)
g
[
£
O
-
5
n
@
1%
3]
o
£

vi/



Quentin Guibert

>
=
©
+
C
o
b=
c
o
()
b0
S
©
4=
O
[
-
@
£
O
[
o
n
I}
9]
1]
o
£

Females

2010 =

2000 =

Year

1990

1980

T
40

T
50
Age

T
60

T
70

T
80

—T
90 100

Estimation

The Li-Lee model
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Figure: Pearson residuals of the Li-Lee model for the calibration period 1980-2019 and ages between 0-105 for the female and
male populations of Metropolitan France. The model is fitted on temperature-ajusted risk exposures.
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Estimation

DLNM model - Goodness of fit for females

Mantns

Figure: Monthly distribution of observed (blue) and predicted (green) numbers of deaths based on the DLNM model per year
for women in metropolitan France for the years between 1980 and 2019. The distributions are grouped by decade.
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Estimation

DLNM model - Goodness of fit for males

Quentin Guibert

W

Mo

Figure: Monthly distribution of observed (blue) and predicted (green) numbers of deaths based on the DLNM model per year
for men in metropolitan France for the years between 1980 and 2019. The distributions are grouped by decade.
ix/
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Estimation

DLNM model - Goodness of fit
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Estimation

DLNM model - Goodness of fit
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Estimation

Temperature-mortality association with the DLNM for females

Quentin Guibert

Figure: Cumulative relative risk of mortality over a 7, a 14 or 21-day period in Metropolitan France calculated for the years
1980-2019 for women across age groups 0-64, 65-74, 75-84, and 85+4. Daily average temperatures are calculated for each city,
and then an average of 14 cities is used to derive the daily average temperatures for Metropolitan France. xii/
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Estimation

Temperature-mortality association with the DLNM for males

Quentin Guibert

Figure: Cumulative relative risk of mortality over a 7, a 14 or 21-day period in Metropolitan France calculated for the years
1980-2019 for men across age groups 0-64, 65-74, 75-84, and 854. Daily average temperatures are calculated for each city,
and then an average of 14 cities is used to derive the daily average temperatures for Metropolitan France. xiii/
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