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Background
The effects of heat and cold on human body

� Temperatures have direct and indirect effects on human health.
� Hot and cold periods in temperate regions (Beker et al., 2018).
� Concept of MMT (Minimum Mortality Temperature) with spatial heterogeneity indicating

different adaptation levels to temperatures (Yin et al., 2019).
� Many epidemiological studies estimated the temperature-attributable deaths.
� Concept of attributable mortality Ñ Require daily or weekly mortality data (Gasparrini, 2014;

Vicedo-Cabrera et al., 2019).
� Heatwaves Õ and cold waves Œ during the 21st century (IPCC, 2023).

BUT, complex projections with a lot of uncertainty, heterogeneity and combined effects due
to human activity.
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Problem set-up
Integrate climate change effects in mortality models

Climate-related mortality in actuarial and demographic literature

� Largely unexplored in this actuarial literature, except some papers, e.g. Seklecka et al. (2017).
� Most stochastic mortality models are based on past dynamics (Lee and Carter, 1992; Barrieu

et al., 2012; Dowd et al., 2020), e.g. the Lee-Carter model

lnp pmx,tq “ αx ` βxκt ` ϵx,t.

ò Specificity of temperature-attributable deaths

� The intensity of shocks is likely to be affected by climate change.

� Observed temperature-related shocks are punctual and generally non-catastrophic.

� They may be offset throughout the year Ñ need to incorporate daily or weekly data.
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Introduction

Main aims

� Coupling a multi-population mortality model with a climate epidemiology model.

� Measuring the effect of future temperatures on mortality trend, differentiating by sex and age.
� Integrating the uncertainty associated with future temperatures.
� Measuring regional sensitivity differences.

To our knowledge, this is one of the first paper where a mortality model and an climate
epidemiology model are combined.
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Modeling framework
Two causes of mortality

Notation and basic assumptions

� µ
pgq

x,t , E
pgq

x,t , and D
pgq

x,t represent, respectively, the force of mortality, observed exposure to risk,
and observed number of deaths at age x and calendar year t.

� Two populations g P tfemale,maleu in Metropolitan France.

� Crude central death rate of mortality pm
pgq

x,t “ D
pgq

x,t{E
pgq

x,t .

Deaths attributable to temperatures

� Decomposition into two components

D
pgq

x,t “ rD
pgq

x,t ` sD
pgq

x,t ñ pm
pgq

x,t “ rm
pgq

x,t ` sm
pgq

x,t

where rD
pgq

x,t and sD
pgq

x,t are the number of deaths not attributable and attributable to
temperature, respectively.

� Define the total attributable fraction related to temperatures as AFpgq

x,t “
sD

pgq

x,t

D
pgq

x,t

.
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Modeling framework
A multi-population model with temperature effects

� Consider the two-populations Li and Lee (2005) model for central deaths rates not
attributable to temperature effects

ln
´

rm
pgq

x,t

¯

“ Ax ` BxKt ` αpgq
x ` βpgq

x κ
pgq

t .

� This choice is compatible with our data, but other models are possible.
� Identifiability constraints

ÿ

tPTy

Kt “ 0 and
ÿ

xPX
B2

x “ 1,

ÿ

tPTy

κ
pgq

t “ 0 and
ÿ

xPX
pβpgq

x q2 “ 1, for g P G.

� Time series model with coherence assumption

Kt “ δ ` Kt´1 ` et Ñ RWD with drift

κ
pgq

t “ cpgq ` ϕpgqκ
pgq

t´1 ` r
pgq

t Ñ AR(1) with drift and |ϕpgq| ă 1.

Error terms are white noise with a mean of zero and a variance-covariance matrix Σ.
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Modeling framework
A multi-population model with temperature effects

Poisson assumption and temperature-attributable deaths

� Poisson assumption for the number deaths not attributable to temperature

rD
pgq

x,t „ Pois
´

E
pgq

x,t rm
pgq

x,t

¯

.

� Knowing the attributable fraction AFpgq

x,t , we also have a Poisson formulation for Dpgq

x,t as

D
pgq

x,t „ Pois
´

E
pgq

x,tT
pgq

x,t rm
pgq

x,t

¯

,

where T
pgq

x,t “

´

1 ´ AFpgq

x,t

¯´1

.

� We consider ln
´

E
pgq

x,tT
pgq

x,t

¯

as an offset term.

� The model is estimated as a Poisson GLM through maximum likelihood estimation.
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Modeling framework
Effect of temperature: the DLNM model

The distributed lag non-linear model (DLNM) model for daily mortality

� We partition the age range X into K P N‹ distinct strata Xk “ rxk´1, xkq, k P t1, . . . ,Ku.

� For each day d P D‹ “ t1, 2, . . . , 365, p366qu of year t, let Dpgq

k,t,d be the number of daily
deaths aggregated on Xk.

� We consider a quasi-Poisson regression model with a log-link function

lnpErD
pgq

k,t,dsq “ η
pgq

k ` spϑd,t, L;θ
pgq

k q ` zd,1ζ
pgq

k,1 `
ÿ

tPTy

htpzd,t; ζ
pgq

k,t q, k P t1, . . . ,Ku,

where:

� spϑd,t, L;θ
pgq

k q is a cross-basis non-linear function, capturing the cumulated effect of the daily
mean temperature ϑd,t over a maximum of L days,

� z1,d is the day of the week indicator,
� htpzd,t; ζ

pgq

k,t q are natural cubic B-splines for the day of the year variable to control the residual
effect of seasonality.
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Calibration
Estimating the DLNM model

For each stratum Xk, we consider a bi-dimensional spline function sp¨, ¨q as (ignoring k)

spxd, L;θq “

L
ÿ

l“0

f ¨ wpxd´l, l;θq “ wJ
x,dθ “

¨

˚

˝

1J
vx¨vl

¨

˚

˝

¨

˚

˝

1J
vl

b Rx,d
looooomooooon

exposure dimension

˛

‹

‚

d

¨

˚

˝

C b 1J
vx

looomooon

lag dimension

˛

‹

‚

˛

‹

‚

˛

‹

‚

θ,

where f ¨ w is a cross-basis function, i.e. the bi-dimensional function space obtained by combining
two independent sets of basis functions, and θ a vector of parameters.

� Hyperparameters:
� exposure-response: natural cubic B-spline with 3 internal knots (10-75-90th perc. daily avg.

temp.)
� lag-response: natural cubic B-spline with an intercept and 3 internal knots.
� Lag L of 21 days.

� Model estimation through MLE (Wood, 2006). The variance-covariance matrix Vrθs is
estimated through a parametric bootstrap technique (Vicedo-Cabrera et al., 2019).
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Calibration
Excess of mortality and attributable risk

Main indicators estimated on the calibration period

� The estimated attributable fraction (Gasparrini and Leone, 2014)

xAF
pgq

k,t,d “ 1 ´ exp

˜

´

L
ÿ

l“0

f ¨ wpϑd,t, l; pθ
pgq

k q

¸

.

� The estimated death counts attributable to temperature for each d and aggregated over a
subperiod Dt Ď D‹ for x P Xk

p

sD
pgq

x,t,d “ xAF
pgq

k,t,d ˆ

L
ÿ

l“0

D
pgq

x,t,d`l

L ` 1
, p

sD
pgq

x,t “
ÿ

dPDt

p

sD
pgq

x,t,d1tdPDtu

� The estimated total attributable fraction and the temperature adjustment over Dt

xAF
pgq

x,tpDtq “

p

sD
pgq

x,t
ř

dPDt
D

pgq

x,t,d

, pT
pgq

x,t pDtq “

ˆ

1 ´ xAF
pgq

x,tpDtq

˙´1
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Calibration
Excess of mortality and attributable risk

Main indicators estimated on the calibration period

� The estimated attributable fraction (Gasparrini and Leone, 2014)

xAF
pgq

k,t,d “ 1 ´ exp

˜

´

L
ÿ

l“0

f ¨ wpϑd,t, l; pθ
pgq

k q

¸

.

� The estimated death counts attributable to temperature for each d and aggregated over a
subperiod Dt Ď D‹ for x P Xk

p

sD
pgq

x,t,d “ xAF
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ÿ

l“0

D
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L ` 1
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sD
pgq

x,t “
ÿ

dPDt
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sD
pgq

x,t,d1tdPDtu

� The estimated total attributable fraction and the temperature adjustment over Dt

xAF
pgq
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x,t
ř

dPDt
D

pgq
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, pT
pgq
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ˆ
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Calibration
Excess of mortality and attributable risk

Main indicators estimated on the calibration period

� The estimated attributable fraction (Gasparrini and Leone, 2014)
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� The estimated death counts attributable to temperature for each d and aggregated over a
subperiod Dt Ď D‹ for x P Xk
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ÿ
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� The estimated total attributable fraction and the temperature adjustment over Dt
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Calibration
The mortality model

Adjusted exposure and death counts data

E “

!

E
pgq

x,t
pT

pgq

x,t pD‹
q, x P X , t P Ty, g P G

)

, C “

!

D
pgq

x,t , x P X , t P Ty, g P G
)

.

Calibration steps (Li, 2013; Robben et al., 2022)

1 Estimate Ax, Bx,Kt from the Poisson log-likelihood under identifiability constraints

max
Ax,Bx,Kt

ÿ

xPX

ÿ

tPTy

`

Dagg
x,t lnp rmagg

x,t q ´ Eagg
x,t rmagg

x,t

˘

,

where Dagg
x,t “ D

pfq

x,t ` D
pmq

x,t , Eagg
x,t “ E

pfq

x,t
pT

pfq

x,t pD‹
q ` E

pmq

x,t
pT

pmq

x,t pD‹
q and rmagg

x,t “ exp pAx ` BxKtq.

2 Estimate the sex-specific parameters from the Poisson log-likelihood under identifiability constraints

@g P G, max
α

pgq
x ,β

pgq
x ,κ

pgq
t

ÿ

xPX

ÿ

tPTy

´

D
pgq

x,t lnp rm
pgq

x,tq ´ E
pgq

x,t
pT

pgq

x,t pD‹
q rm

pgq

x,t

¯

.
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Calibration
The mortality model

Adjusted exposure and death counts data

E “

!

E
pgq

x,t
pT

pgq

x,t pD‹
q, x P X , t P Ty, g P G

)

, C “

!

D
pgq

x,t , x P X , t P Ty, g P G
)

.

Calibration steps (Li, 2013; Robben et al., 2022)

1 Estimate Ax, Bx,Kt from the Poisson log-likelihood under identifiability constraints

max
Ax,Bx,Kt

ÿ

xPX

ÿ

tPTy

`

Dagg
x,t lnp rmagg

x,t q ´ Eagg
x,t rmagg

x,t

˘

,

where Dagg
x,t “ D

pfq

x,t ` D
pmq

x,t , Eagg
x,t “ E

pfq

x,t
pT

pfq

x,t pD‹
q ` E

pmq

x,t
pT

pmq

x,t pD‹
q and rmagg

x,t “ exp pAx ` BxKtq.

2 Estimate the sex-specific parameters from the Poisson log-likelihood under identifiability constraints

@g P G, max
α

pgq
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pgq
x ,κ

pgq
t

ÿ

xPX

ÿ

tPTy

´

D
pgq

x,t lnp rm
pgq
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pgq

x,t
pT

pgq

x,t pD‹
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.
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Calibration
Time series model

� Temperature dynamics are exogenous information from climate models.
� Time series model is as follow

Yt “ Υ ` ΦYt´1 ` Et,

where

Yt “

¨

˚

˝

Kt

κ
pfq

t

κ
pmq

t

˛

‹

‚

,Υ “

¨

˝

δ

cpfq

cpmq

˛

‚,Φ “

¨

˝

1 0 0

0 ϕpfq 0

0 0 ϕpmq

˛

‚ and Et “

¨

˚

˝

et

r
pfq

t

r
pmq

t

˛

‹

‚

.

� The parameters Υ, Φ and Σ are estimated through maximum likelihood based on the
R-package MultiMoMo (Antonio et al., 2022).
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Forecast
Central deaths rates

Simulation procedure for each year t P T for
y

1 Simulate p

rm
pgq

x,t based on vector Yt.

2 Select a daily temperature trajectory p pϑd,tq along a climate scenario.

3 Compute the predicted attributable fraction xAF
pgq

x,d,t for each day d.

4 Project central mortality rates with temperature effects accumulated over the period Dt

p

pm
pgq
x,t “ p

rm
pgq

x,t

»

–1 `
ÿ

dPDt

ω
pgq

x,t,d
xAF

pgq

x,d,tp1 ´ xAF
pgq

x,d,tq´11tdPDtu

fi

fl .

where ω
pgq

x,t,d “ rD
pgq

x,t,d{ rD
pgq
x,t , a weight to be chosen, for the distribution of death counts not attributable to

temperature.
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Forecast
Central deaths rates

Simulation procedure for each year t P T for
y

1 Simulate p

rm
pgq

x,t based on vector Yt.

2 Select a daily temperature trajectory p pϑd,tq along a climate scenario.

3 Compute the predicted attributable fraction xAF
pgq

x,d,t for each day d.

4 Project central mortality rates with temperature effects accumulated over the period Dt

p

pm
pgq
x,t “ p

rm
pgq

x,t

»

–1 `
ÿ

dPDt

ω
pgq

x,t,d
xAF

pgq

x,d,tp1 ´ xAF
pgq

x,d,tq´11tdPDtu

fi

fl .

where ω
pgq

x,t,d “ rD
pgq

x,t,d{ rD
pgq
x,t , a weight to be chosen, for the distribution of death counts not attributable to

temperature.



Im
pa

ct
s

of
C
lim

at
e

C
ha

ng
e

on
M

or
ta

lit
y

—
Q

ue
nt

in
G

ui
be

rt

14/31

Forecast
Central deaths rates

Simulation procedure for each year t P T for
y

1 Simulate p

rm
pgq

x,t based on vector Yt.

2 Select a daily temperature trajectory p pϑd,tq along a climate scenario.

3 Compute the predicted attributable fraction xAF
pgq

x,d,t for each day d.

4 Project central mortality rates with temperature effects accumulated over the period Dt

p

pm
pgq
x,t “ p

rm
pgq

x,t

»

–1 `
ÿ

dPDt

ω
pgq

x,t,d
xAF

pgq

x,d,tp1 ´ xAF
pgq

x,d,tq´11tdPDtu

fi

fl .

where ω
pgq

x,t,d “ rD
pgq

x,t,d{ rD
pgq
x,t , a weight to be chosen, for the distribution of death counts not attributable to

temperature.
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Forecast
Central deaths rates

Simulation procedure for each year t P T for
y

1 Simulate p

rm
pgq

x,t based on vector Yt.

2 Select a daily temperature trajectory p pϑd,tq along a climate scenario.

3 Compute the predicted attributable fraction xAF
pgq

x,d,t for each day d.

4 Project central mortality rates with temperature effects accumulated over the period Dt

p

pm
pgq
x,t “ p

rm
pgq

x,t

»

–1 `
ÿ

dPDt

ω
pgq

x,t,d
xAF

pgq

x,d,tp1 ´ xAF
pgq

x,d,tq´11tdPDtu

fi

fl .

where ω
pgq

x,t,d “ rD
pgq

x,t,d{ rD
pgq
x,t , a weight to be chosen, for the distribution of death counts not attributable to

temperature.
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Case study
Temperature data

� Calibration period: Ty “ t1980, . . . , 2019u.

� Extract average daily temperatures of 14 cities
from the GHCN database (NOAA).

� Compute average daily temperatures for
Metropolitan France. Jan.

Feb.

Mar.

Apr.

May

June

July

Aug.

Sept.

Oct.

Nov.

Dec.

−10 0 10 20 30
Avg. Temperature [C]

M
on

th
s

−10

0

10

20

30
Temp. [C]

Figure: Distribution of average daily temperatures for each
month of the year.

14 stations are located around Bordeaux, Brest, Caen, Clermont-Ferrand, Dijon, Lille, Lyon, Marseille, Nantes, Paris,
Perpignan, Strasbourg, Toulouse and Tours.
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Case study
Mortality data

Annual data from the HMD
� Calibration period: Ty “ t1980, . . . , 2019u.
� Age range: X “ t0, . . . , 105u.

Daily data from the Quetelet-Prodego Diffusion network (INSEE, 2020)

Males Females

−10 0 10 20 30 −10 0 10 20 30

500

1000

1500

2000

Avg. Temperature [C]

D
ai

ly
 d

ea
th

s

Figure: Representation of the daily death count according to the average daily temperature in France for women and men.
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Estimation
Temperature-mortality association with the DLNM

The DLNM estimation on 1980-2019
� K “ 4 age buckets (0-64, 65-74, 75-84, and 85+) and split by sex.

� Hyperparameters are selected according to the literature.

� Extreme cold and hot: r0%, 2.5%s and r97.5%, 100%s quantiles.

� Moderate cold and hot: s2.5%,MMTr and sMMT, 97.5%r quantiles.

Females Males

1980 1990 2000 2010 2020 1980 1990 2000 2010 2020

0.0

2.5

5.0

7.5

10.0

Years

E
xc

es
s 

m
or

ta
lit

y 
(%

)

Temperature effect All effects Extreme cold Extreme hot Moderate cold Moderate hot

Figure: Temperature attributable fraction in Metropolitan France (95% CI with 1,000 Monte Carlo simulations)
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Estimation
Temperature-mortality association with the DLNM

75−84 85+

0−64 65−74

−10 0 10 20 30 −10 0 10 20 30
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R
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Figure: Cumulative relative risk of mortality over a 21-day period in Metropolitan France calculated for the years 1980-2019
for women (red) and men (blue) (95% CI with 1,000 Monte Carlo simulations)
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Estimation
The Li-Lee model

−7.5

−5.0

−2.5

0 25 50 75 100
Age

Common :  Ax

−0.2

−0.1

0.0

0.1

0.2

0 25 50 75 100
Age

Common :  Bx

−2.5

0.0

2.5

5.0

1980 1990 2000 2010 2020
Year

Common :  Kt

−0.6

−0.4

−0.2

0.0

0 25 50 75 100
Age

Female :  αx
(f)

−0.2

0.0

0.2

0 25 50 75 100
Age

Female :  βx
(f)

−0.4

0.0

0.4

0.8

1980 1990 2000 2010 2020
Year

Female :  κt
(f)

0.1

0.2

0.3

0.4

0 25 50 75 100
Age

Male :  αx
(m)

0.0

0.1

0.2

0.3

0.4

0.5

0 25 50 75 100
Age

Male :  βx
(m)

−1.0

−0.5

0.0

0.5

1.0

1980 1990 2000 2010 2020
Year

Male :  κt
(m)

Adjusted exposure to risk Original Li−Lee model

Figure: Estimated parameters p pAx, pBx, xKt, pαpfq
x , pβpfq

x , pκ
pfq
t , pαpmq

x , pβpmq
x , pκ

pmq
t q of the Li-Lee model for the calibration

period 1980-2019 and ages between 0-105 for the entire population of Metropolitan France (Common), females (Female), and
males (Male).
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Simulation
Forecasting mortality

� Projection of parameters pKt, pκ
pfq

t , and pκ
pmq

t over the period 2020-2100.
� For both the original Li-Lee model and the Li-Lee model with ajusted exposure to risk.

κt
(f) κt

(m) Kt

1975 2000 2025 2050 2075 2100 1975 2000 2025 2050 2075 2100 1975 2000 2025 2050 2075 2100

−20

−10

0

−2

−1

0

1

−4

−3

−2

−1

0

1

Years

Tr
en

d

Calibration data

Adjusted exposure to risk

Original Li−Lee model

Figure: Projection of trend parameters xKt, pκ
pfq
t , and pκ

pmq
t over the period 2020-2100 for the Li-Lee models with original

exposure to risk and ajusted exposure to risk.



Im
pa

ct
s

of
C
lim

at
e

C
ha

ng
e

on
M

or
ta

lit
y

—
Q

ue
nt

in
G

ui
be

rt

21/31

Simulation
Climate scenarios

� 12 climate models from the DRIAS Ñ uncertainty about future temperatures.
� 3 Representative Concentration Pathway (RCP): RCP2.6, RCP4.5 and RCP8.5.
� 8 km resolution grid (SAFRAN) Ñ 14 cities Ñ average daily temperatures for Metropolitan

France.

GCM RCM RCPs available Period

CNRM-CM5 ALADIN63 RCP8.5, RCP4.5, RCP2.6 2006-2100
MPI-ESM CCLM4-8-17 RCP8.5, RCP4.5, RCP2.6 2006-2100
HadGEM2 RegCM4-6 RCP8.5, RCP2.6 2006-2099
EC-EARTH RCA4 RCP8.5, RCP4.5, RCP2.6 2006-2100
IPSL-CM5A WRF381P RCP8.5, RCP4.5 2006-2100

NorESM1 REMO2015 RCP8.5, RCP2.6 2006-2100
MPI-ESM REMO2009 RCP8.5, RCP4.5, RCP2.6 2006-2100
HadGEM2 CCLM4-8-17 RCP8.5, RCP4.5 2006-2099
EC-EARTH RACMO22E RCP8.5, RCP4.5, RCP2.6 2006-2100
IPSL-CM5A RCA4 RCP8.5, RCP4.5 2006-2100

CNRM-CM5 RACMO22E RCP8.5, RCP4.5, RCP2.6 2006-2100
NorESM1 HIRHAM5 v3 RCP8.5, RCP4.5 2006-2100
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Simulation
Simulating temperatures effects

� Projection for each climate model and RCP scenario.

� Compute xAF
pgq

x,tpDtq and aggregate by age and sex for facilitate visual analysis

xAFtpDtq “
ÿ

gPG

ÿ

xPX

xAF
pgq

x,tpDtq
D

pgq

x,2019

D2019
, where D2019 “

ÿ

gPG

ÿ

xPX
D

pgq

x,2019.
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Figure: Temperature attributable fraction in Metropolitan France - Years 2020-2100 for both women and men.
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Simulation
Impact of location - Perpignan

RCP 2.6 RCP 4.5 RCP 8.5

2020 2040 2060 2080 2100 2020 2040 2060 2080 2100 2020 2040 2060 2080 2100
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Figure: Temperature attributable fraction in Perpignan, simulated for the years 2020-2100.



Im
pa

ct
s

of
C
lim

at
e

C
ha

ng
e

on
M

or
ta

lit
y

—
Q

ue
nt

in
G

ui
be

rt

24/31

Simulation
Life-years lost due to temperature

� The total mortality rates attributable and non attributable to temperature effects

pq
pgq

x,t “ 1 ´ exp
´

´ p

pm
pgq

x,t

¯

, p

rq
pgq

x,t “ 1 ´ exp
´

p

rm
pgq

x,t

¯

,

� Life expectancy lost (or gained) due to temperatures for a person of age x at date t due to
the temperature effect

∆pe
pgq

x,t “

tmax
ÿ

k“1

«

k´1
ź

j“0

´

1 ´ pq
pgq

x,j

¯

´

k´1
ź

j“0

´

1 ´ p

rq
pgq

x,j

¯

ff

.



Im
pa

ct
s

of
C
lim

at
e

C
ha

ng
e

on
M

or
ta

lit
y

—
Q

ue
nt

in
G

ui
be

rt

25/31

Simulation
Life-years lost due to temperature

RCP 2.6 RCP 4.5 RCP 8.5
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Figure: Life expectancy at birth lost in Metropolitan France, simulated for the years 2020-2100 for both women and men. We
present both the loss related to all temperature effects and extreme hot effects only.
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Simulation
Life-years lost due to temperature - Perpignan
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Figure: Life expectancy at birth lost in Perpignan, simulated for the years 2020-2100 for both women and men. We present
both the loss related to all temperature effects and extreme hot effects only.
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Conclusion

Main results
� A multi-population mortality model incorporating the effect of temperature changes on

mortality.
� Assess gains or losses in projected life expectancy related to temperatures.
� Attenuation of the effect of cold temperature in RCP8.5 scenario.
� Increase of the effect of hot temperature in RCP8.5 scenario, especially in southern

departments of France from 2050.

Limitations and extensions
� Strong assumption: we assume that populations do not adapt to their local environment:

� Better (or worse) acclimatization to hot and cold temperatures.
� House insulation, development of air conditioning, physiological process or immunity.
� Prevention.

� Integrate other environmental variables (air pollution, the heat index, ...).
� Consider other regions, especially Southern Europe or the MENA region.



Thank you for your attention!
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Background
Temperature-attributable mortality

Figure: Attributable fraction anomalies by RCP scenario (2070–2099) (Martínez-Solanas et al., 2021)
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Modeling framework
Literature on mortality models with jumps

The Liu and Li (2015) model

lnp pmx,tq “ αx ` βxκt ` NtJx,t ` ϵx,t,

where Nt is a Bernoulli variable and Jx,t is the intensity of gaussian mortality jumps.

Integrating vanishing jump effects (Goes et al., 2023)
Bayesian formulation with gradually vanishing jump effects

lnp pmx,tq “ αx ` βxκt ` βpJq
x Jt ` ϵx,t

Jt “ αJt´1 ` NtYt,

where Yt, Nt and κt are random variables defined with a prior.
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Modeling framework
Literature on mortality models with jumps

Catastrophe and volatility regime (Robben and Antonio, 2024)
Jumps for the residuals of the mortality improvement rates of population c

z
pcq

x,t :“ ln m̂
pcq

x,t ´ ln m̂
pcq

x,t´1 ´ plnµ
pcq

x,t ´ lnµ
pcq

x,t´1q

Z
pcq

x,t “ βpcq
x Y

pcq

t ` ϵ
pcq

x,t,

where Yt is null or a normal variable depending on the state of a Markov chain.

ò Specificity of temperature-attributable deaths

� The intensity of shocks is likely to be affected by climate change.

� Observed temperature-related shocks are punctual and generally non-catastrophic.

� They may be offset throughout the year Ñ need to incorporate daily or weekly data.
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The DLNM model
General framework

The DLNM models the relationship between a time series pYd, d P T q for a set of indices T

ρpE rYdsq “ η `

J
ÿ

j“1

sjpxd,j , L;θjq `

M
ÿ

m“1

rmpud,m;γmq,`

P
ÿ

p“1

hppzd,p; ζpq,

� ρp¨q is a monotonic link function, e.g. the log-link function for count data.
� each function sjp¨, ¨q is a smooth bi-dimensional function that capture delayed effects of past

exposures with a lag L P N and a bi-dimensional cross basis function f ¨ w

spxd, L;θq “

ż L

0

f ¨ wpxd´l, l;θqdl «

L
ÿ

l“0

f ¨ wpxd´l, l;θq.

� rm p¨q are smooth univariate functions that capture the effects of confounding variables ud,m,
� hpp¨q are smooth univariate functions of categorical time variables that control residual

seasonal effects.
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Case study
Mortality data
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Figure: Probability density of the number of deaths by month of the year
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Case study
Climate scenarios
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Figure: Projection of temperatures and heatwaves by RCP scenario in Metropolitan France over the period 2020-2100.
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Estimation
The Li-Lee model
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Figure: Pearson residuals of the Li-Lee model for the calibration period 1980-2019 and ages between 0-105 for the female and
male populations of Metropolitan France. The model is fitted on temperature-ajusted risk exposures.
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Estimation
DLNM model - Goodness of fit for females
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Figure: Monthly distribution of observed (blue) and predicted (green) numbers of deaths based on the DLNM model per year
for women in metropolitan France for the years between 1980 and 2019. The distributions are grouped by decade.
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Estimation
DLNM model - Goodness of fit for males
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Figure: Monthly distribution of observed (blue) and predicted (green) numbers of deaths based on the DLNM model per year
for men in metropolitan France for the years between 1980 and 2019. The distributions are grouped by decade.



Im
pa

ct
s

of
C
lim

at
e

C
ha

ng
e

on
M

or
ta

lit
y

—
Q

ue
nt

in
G

ui
be

rt

x/

Estimation
DLNM model - Goodness of fit

Figure: Representation of deviance residuals for DLNM models associated with age groups 0-64, 65-74, 75-84, and 85+ for
women in metropolitan France for the years between 1980 and 2019.
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Estimation
DLNM model - Goodness of fit

Figure: Representation of deviance residuals for DLNM models associated with age groups 0-64, 65-74, 75-84, and 85+ for
men in metropolitan France for the years between 1980 and 2019.
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Estimation
Temperature-mortality association with the DLNM for females
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Figure: Cumulative relative risk of mortality over a 7, a 14 or 21-day period in Metropolitan France calculated for the years
1980-2019 for women across age groups 0-64, 65-74, 75-84, and 85+. Daily average temperatures are calculated for each city,
and then an average of 14 cities is used to derive the daily average temperatures for Metropolitan France.
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Estimation
Temperature-mortality association with the DLNM for males
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Figure: Cumulative relative risk of mortality over a 7, a 14 or 21-day period in Metropolitan France calculated for the years
1980-2019 for men across age groups 0-64, 65-74, 75-84, and 85+. Daily average temperatures are calculated for each city,
and then an average of 14 cities is used to derive the daily average temperatures for Metropolitan France.
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