| KU LEUVEN

Demystifying neural networks and their use In
actuarial science

CNP Assurances & Chaire DIALog, petit dejeuner
Katrien Antonio
December 16, 2021

Based on (ongoing) work with PhD Roel Henckaerts, MSc Simon Gielis and MSc Freek Holvoet

Why this topic?

Learning outcomes ‘W

de-mystify neural networks in light of increasing literature on the use of neural nets in actuarial science

develop foundations of working with (different types of) neural networks

focus on the use of neural networks for the analysis of claim frequency + severity data, also in combination with
GLMs or tree-based ML models

present some ongoing research on this topic.

2 | 44

Want to read more?

This presentation is based on

¢ Michael A. Nielsen (2015) Neural networks and deep
learning

e the work of prof. Taylor Arnold, in particular Chapter 8
In the book A computational approach to statistical
learning by Arnold, Kane & Lewis (2019)

¢ Boehmke (2020) on Deep Learning with R: using Keras
with TensorFlow backend.

Actuarial modelling with neural nets is covered in (among
others)

Withrich & Buser (2020) Data analytics for non-life
insurance pricing, in particular Chapter 5

Withrich (2019) From Generalized Linear Models to
neural networks, and back

Withrich & Merz (2019) Editorial: Yes, we CANN! in
ASTIN Bulletin 49/1

Denuit, Hainaut & Trufin (2019) Effective Statistical
Learning Methods for Actuaries: Neural Networks and
Extensions, Springer Actuarial Lecture Notes

A series of (working) papers covering the use of neural
nets in insurance pricing (classic, and with telematics

collected data), mortality forecasting, reserving, ...
3/ 44

http://neuralnetworksanddeeplearning.com/
https://www.routledge.com/A-Computational-Approach-to-Statistical-Learning/Arnold-Kane-Lewis/p/book/9780367570613
https://github.com/rstudio-conf-2020/dl-keras-tf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2870308
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3491790
https://www.cambridge.org/core/journals/astin-bulletin-journal-of-the-iaa/article/editorial-yes-we-cann/66E8BEC373B5CCEF3BF3303D442D6B75
https://www.springer.com/gp/book/9783030258269

Outline

Getting started e Regression with neural networks

o Redefining GLMs as a neural network

o Including exposure

o Skip connection and Combined Actuarial Neural
Networks (CANNS)

o Ongoing research

o Unpacking our toolbox
o Tensors

De-mystifying neural networks

o What's in a name?

o A simple neural network * Conclusions

Neural network architecture

o An architecture with layers in {keras}

Network compilation

o Loss function and forward pass
o Gradient descent and backpropagation

4 [44

DBSCAN

K-Means Agglomerative Naive Bayes

K-NN

Classification

f S
Mean-Shift Decision Trees

Fuzzy C-Means

.<
z

Logistic Regression

Euclat

Linear Regression
Apriori (Pattern search
Regression ;ol.ynominl
EP-Growth egression
Ridge/Lasso
Regression
DIMENS|ON REDUCTION
(generalization
t-SNE LDA
PCA LSA SWD ELE':SRSJ]?:\(‘,‘-

Rondom Forest

ENSEMBLE
METHODS

XGBoost

MACHINE
LEARNING

REINFORCEMENT
LEARNING

Genetic Q-Learning
Algorithm

Boosting

SARSA Deep Q-Network AdaBoost

LightGB
A3C (OGN) ? i

CatBoost

Perceptrons
(MLP)

Seq2seq

NEURAL
NETS AND
DEEP LEARNING

Convolutional

Recurrent
Neural Networks
(RNN)

LSM

Gernerative
Adversarial Networks

LSTM (GAN)

Some roadmaps to explore the ML landscape...

LEARNING

Source: Machine Learning for Everyone In simple words. With real-world examples. Yes, again.

5/ 44

https://vas3k.com/blog/machine_learning/

Getting started

6/ 44

What's the excitement about?

© Neural networks are an exciting topic to explore, because:

They are a biologically-inspired programming paradigm that enables a computer to learn from data.

Deep learning is a powerful set of techniques for learning in neural networks.

Neural networks and deep learning provide best-in-class solutions when going beyond tabular data, e.g. many
problems in image recognition, speech recognition and natural language processing.

The universal approximation theorem (Hornik et al, 1989; Cybenko, 1989) states that neural networks with a single
hidden layer can be used to approximate any continuous function to any desired precision.

7 | 44

An accessible programming framework

R KN 7

With interface to Keras and TensorFlow.

e Keras:
An inuitive high level Python interface to TensorFlow.

e TensorFlow:
Open source platform for machine learning developed by the Google Brain Team, see https://www.tensorflow.org/.

Special focus on training deep neural networks.
e Tensors generalize vectors and matrices to an arbitrary number of dimensions, cfr. image, video or sound data.

e TensorFlow is a flexible framework which consists of highly optimized functions based on tensors.
8 | 44

https://www.tensorflow.org/

Example of a 4D tensor

Let's picture an image data set where

!!!!!!!!!!%IIII
e each image has a specific height and width X
- Oy ENNRENNNENNNEEN /NEEE
o three color channels (Red, Green, Blue) are registered /\/‘ T T TR
« multiple images ('samples) are stored. TT1TTTTTTTT T ===== }====
NNNNNNNNNNNNNEN CINNRN; oo
Then, a collection of images can be stored in a 4D tensor SNNENNNNNNNEEEE TT T TR
, | NNNNNNNNNNNNNNN CINNAN ;S o
(samples, height, width, channels). JEH., | HERRERRERREREEDR TTTT 1T
g | HINNRANNNRNEEEER TTTT
HARERENENRERERER T
ANERREERREREEER
ERERRRRRRERERER
L observations

Source: Bradley Boehmke

9/ 44

https://github.com/rstudio-conf-2020/dl-keras-tf

De-mystifying neural networks

10 | 44

What's in a name?

A mostly complete chart of -~
Different types of neural networks and their applications: B Backtes mputcell Neural Networks e
Input Cell ©2016 Fjodor van Veen - asimovinstitute.org

° A N N A rtlﬁ C I a l N e u ra l N etWO rk 4 Noisy Input Cell Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF)

@ Hidden Cell g>. g)
for regression and classification problems, with vectors @ Frovabistic Hidden cel o

M . Spiking Hidden Cell
as input data ® o

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM) Gated Recurrent Unit (GRU)
-] - - - - -]

TN T ST
. Match Input Output Cell "I‘h}#h}'{ {d&}’fﬂ&:'{ % }':da"f
e e o TR SRS
. A TR ¥
e CNN: Convolutional Neural Network @ Fecurentceu
@ wvemoryceu Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

for image processing, image/face/... recognition, with © orreenehemony ot
Images as input data Kernel

QO Convolution or Paol

e RNN: Recurrent Neural Network

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM) Restricted BM (RBM) Deep Belief Network (DBN)

for sequential data such as text or time series
Vi S Y
0 O 0y B

/]

..and many more!

Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)
W - o~ -

e NP ~a ~ A
" S~ & = ~

Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN) 1 1 / 44

o VNN s il F s ¥yl

A simple neural network

De-mystify artificial neural networks (ANNs):

e a collection of inter-woven linear models
« extending linear approaches to detect non-linear
interactions in high-dimensional data.

See the picture on the right.

Some terminology:
Goal: predict a scalar response y from scalar input z.

« zisthe input layer
« visthe output layer, to predict y

« middle layer is a hidden layer
e four neurons: z, z1, zo and v.

12 | 44

A simple neural network (cont.)

First, we apply two independent linear models:

z21=bi+z-w
Z9 = by + T ws

using four parameters: two intercepts and two slopes.

Next, we construct another linear model with the z; as
Inputs:

Y:=v=>b3+ 21 Uy + 22 - Us.
Putting it all together:

v:b3—|—zl-u1—|—z2-u2
=bs+(bi+z-wi) w+ (bg+z-wy) up
:(b3+u1-b1+u2-b2)+(w1-u1+w2-u2)-w
= (intercept) + (slope) - z.

Model is over-parametrized, with infinitely many ways to

describe the same model.

Essentially, still a linear model!

13/ 44

A simple neural network (cont.)

We capture non-linear relationships between z and v by
replacing

’U:b3—|—21"U,1+22"U,2.
with

v=>bs+o(z1) u +o0(z2) - uy
=bs+o(by +x-wy) us +0o(by + - wsy) - ug,

where o(.) is an activation function, a mapping from R
to R.

Adding an activation function greatly increases the set of

possible relations between = and v!

For example, the rectified linear unit (ReLU) activation
function:

x, ifz >0
ReLU(z) = ,
0, otherwise.
~
~
~
~ ”
b rd
~ rd
~ + pd
~ rd g
~ rd
~ ”
~ Pd
<
~
~ y
~ e
~ vd

Many more activation functions: sigmoid, softmax, identity,
etc. (see further).

14 [44

Examples of activation functions

Sigmoid Tanh RelU Leaky RelLU
1 ef —e*® g(z) = max(ez, 2)
== — — []1
9(2) | S o i 9(2) o 3 B Pl =il 2) with € < 1

Source: https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning

15 | 44

https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning

From the simple neural network to ANNSs

Artificial Neural networks (ANNS): hidden hidden

a collection of neurons output

e organized into an ordered set of layers
e directed connections pass signals between neurons in

. >
. input
adjacent layers
e to train:

update parameters describing the connections by
minimizing loss function over training data O
 to predict:
pass x; to first layer, output of final layer is g,.

This is a feedforward neural network - no loops!
The network is dense or densely connected if each

neuron in a layer receives an input from all the neurons
present in the previous layer.

16 | 44

The neural nets' terminology

Using the neural nets terminology or language: Bias +1

intercept called the bias

Sigmoid activation function

S t—our

sigmoid

Point X position

slopes called weights

e L +1 layers in total, with input layer denoted as layer Point Y position ouput
0 and output layer as L Blue if OUT >= 0.5
Input weights
« technically, deep learning refers to any neural
network that has 2 or more hidden layers. A single layer ANN, also called perceptron or artificial

neuron.

17 | 44

An architecture with layers

In a neural network, input travels through a sequence of layers, and gets transformed into the output.

This sequential layer structure is really at the core of the
Keras libary.

model <«
keras_model_sequential() %>%
layer_dense(...) %>%
layer_dense(«e.)

Layers consist of nodes and the connections between these nodes and the previous layer.

layer_dense() is creating a fully connected feed forward neural network.

18 | 44

A hidden layer

model « keras_model_sequential() %>%
layer_dense(units = 512, activation = 'relu', input_shape = c(784)) # hidden layer

e units = 512:number of nodes in the given layer
e input_shape = c(784)

o tells the first hidden layer how many input
features there are

o only required for the first layer_dense
input layer -

e activation = 'relu':this hidden layer uses the RelU
activation function.

Here: a (28x28) picture is flattened to a an input vector of
length 784.

19 | 44

Output layer

model « keras_model_sequential() %>%
layer_dense(units = 512, activation = 'relu', input_shape = c(784) %>%
layer_dense(units = 10, activation = 'softmax')

The choice of the units and activation function in the output layer depend on the type of prediction!

Two primary arguments of concern for the final output
layer:

1. number of units

o regression: units = 1:

20 | 44

Output layer

model « keras_model_sequential() %>%
layer_dense(units = 512, activation = 'relu', input_shape = c(784) %>%
layer_dense(units = 10, activation = 'softmax')

The choice of the units and activation function in the output layer depend on the type of prediction!

Two primary arguments of concern for the final output
layer:

1. number of units

o regression: units = 1 e
o binary classification: units = 1 //\f/
— ///
J,/f
IJ/
z’/

21 | 44

Output layer

model « keras_model_sequential() %>%
layer_dense(units = 512, activation = 'relu', input_shape = c(784) %>%
layer_dense(units = 10, activation = 'softmax')

The choice of the units and activation function in the output layer depend on the type of prediction!

Two primary arguments of concern for the final output
layer:

1. number of units
o regression: units = 1
o binary classification: units = 1
o multi-class classification: units = n

22 | 44

Output layer

model « keras_model_sequential() %>%
layer_dense(units = 512, activation = 'relu', input_shape = c(784) %>%
layer_dense(units = 10, activation = 'softmax')

The choice of the units and activation function in the output layer depend on the type of prediction!

Two primary arguments of concern for the final output
layer:

1. number of units
2. activation function
o regression: activation = NULL (identity function)

23 | 44

Output layer

model « keras_model_sequential() %>%
layer_dense(units = 512, activation = 'relu', input_shape = c(784) %>%
layer_dense(units = 10, activation = 'softmax')

The choice of the units and activation function in the output layer depend on the type of prediction!

Two primary arguments of concern for the final output Sigmoid activation function

1.00

layer:

0.75+

1. number of units

2. activation function Sos0-
o regression: activation = NULL (identity function)
o binary classification: activation = 'sigmoid'

0.25 1

0.00

50 25 00 25 5.0

24 | 44

Output layer

model « keras_model_sequential() %>%
layer_dense(units = 512, activation = 'relu', input_shape = c(784) %>%
layer_dense(units = 10, activation = 'softmax')

The choice of the units and activation function in the output layer depend on the type of prediction!

Two primary arguments of concern for the final output Output node Linear transformation Softmax Activation Probabilities
layer: @ . Yo=H-W+b — f(}ru)=z‘:—:}_- — 001
1. number of units @' s wemwes T fOusim 00
2. activation function @. —— N=HWsb T fp)=gy T 085
o regression: activation = NULL (identity function) @ . =H Wb — fOo) =g —— o

o binary classification: activation = 'sigmoid' ;

o multi-class classification: activation = 'softmax' @| L vemwes e fOD=gZy . o0l

@| — Yo:=H-W+b — f{yg)zz% — _oo;m
1.00

25 | 44

Network compilation

26 | 44

Loss function and forward pass

o Initialize weights (randomly).

e The forward pass then results in predicted values y, to
be compared with y.

e The difference is measured with a loss function, the
quantity that will be minimized during training.

Some common loss functions:

e "mse":Gaussian

e "poisson": Poisson

e "binary_crossentropy" : binary classification

e "categorical crossentropy": multi-class classification

many others, see the Keras documentation

Pick a loss function that aligns best to the problem at
hand!

Input X

Y

Weights

Hidden layer

| (data transformation)

¥

Predictions
Y

-
o,
e,
",

True targets
Y

-~
-
A

Loss
function

Loss score

27 | 44

https://keras.io/losses/

Compiling the model

model ¢ model %>%
compile(loss = "categorical _crossentropy",
optimize = optimizer_rmsprop(),
metrics = c('accuracy'))

Keras includes several optimizers for minimizing the loss

function.
Popular choices are:

e optimizer_ rmsprop()
e optimizer_adam()

e other optimizers, see the Keras documentation

The goal is to find weights and bias terms that minimize
the loss function.

Input X

Weights

v

Hidden layer

(data transformation)

v

[Predictions] [True targets]

Y ¥

..H""\-\. .___.-"
", o~

-'\-
) 5. ., -

@, Loss
%) function

+| Loss score

28 | 44

https://keras.io/optimizers/

Gradient descent and backpropagation

In general terms, we want to find (with w for all unknown
parameters)

min L(w).

with gradient descent: we'll move in the direction the
loss locally decreases the fastest!

Thus,
Whew = Wold — 1 - vwﬁ(wold)a
with learning rate .

With a loss function evaluated over n training data points
(cfr. supra on epochs and minibatches)

1 n
Vo L(w) = — Y VL
=1

29 | 44

Gradient descent and backpropagation

In general terms, we want to find (with w for all unknown
parameters)

min £(w),

with gradient descent: we'll move in the direction the
loss locally decreases the fastest!

Thus,
Whew = Wold — 1 - vwﬁ('wold)a
with learning rate .

With a loss function evaluated over n training data points
(cfr. supra on epochs and minibatches)

1 n
Vo L(w) = — Y VL
=1

Computing the gradient of the loss function wrt all
trainable parameters:

e tons of parameters

need for efficient algorithm to calculate gradient
need for generic algorithm usable for arbitrary
number of layers and neurons in each layer.

The strategy (Rumelhart et al., 1986, Nature)

backpropagation

derivatives in outer layer L are easy

derivatives in layer [as a function of derivatives in
layer I+ 1

all about the chain rule for derivatives!

30 / 44

https://en.wikipedia.org/wiki/Backpropagation

Three variants of gradient descent

with batch gradient descent: With mini-batch gradient descent:
e compute loss for each observation in the training data e randomly select a subset of the training observations,
e update parameters after all training examples have compute gradient
been evaluated e update parameters after this subset has been
e con: scales horribly to bigger data sets. evaluated.
With stochastic gradient descent: Pros:
e randomly select an observation, compute gradient e balance efficiency of batch vs stochastic
e update parameters after this single observation has e balance robust convergence of batch with some
been evaluated stochastic nature to avoid local minima.

e con: takes a long time to convergence.
Cons:

e additional tuning parameter.

31/ 44

Summary of the fundamentals

Our introduction to neural nets focused on: List of tuning/architectural choices: (more on these

_ i , would require more time)
o design neural networks sequentially in {keras}

keras_model _sequential e the number of layers
. e the number of nodes per layer
e layers consist of nodes and connections e ationtlinchions

e the layer type

e the loss function
layer_dense the optimization algorithm
e the batch size

e the number of epochs

« vanilla choice is a fully connected layer

o f1t the model via gradient descent (i.e.
backpropagation).

32 [44

Claim frequency and severity regression

33/ 44

Regression with neural networks

Actuaries often consider GLMS, for instance for claim frequency data:

~ Poisson(\ = exp(z 3)).

We now redefine this model as a heural network:

Formula GLM Neural network
response output node
Poisson distribution loss function
exp inverse link function activation function
T predictors Input nodes
B fitted effect weights

34 [44

Adding a skip connection in a neural network

So far, we stayed in a purely sequential architecture.

Now, we will allow some input nodes to be connected directly to the output node, i.e,, Skip connections.

Area
VehPower
VehAge
DrivAge

BonusMalus

Figure taken from Schelldorfer and Wuthrich (2019).

The output node, without skip connection, calculates (with

o(.) the activation function):

J(Z w;h; 4 b).

With a skip connection, this simply becomes:

o() wihi + b+ s).

We take a linear combination of the last hidden layer
outputs and add the skip input, before applying the
activation function.

So, what can we do with this?

35/ 44

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3320525

Adding a skip connection in a neural network (cont.)

Let's take a claim frequency example with the exponential activation function.

e Adding exposure as an offset term:

output = exp(z w;h; + b+ log(expo)) = expo - exp(z wih; +b).

e Adding a base prediction:

output = eXp(Z w;h; + b+ log(base)) = base - exp(z w;h; + b).
e The combination of both:

output = exp(z w;h; + b+ log(expo - base)) = expo - base - exp(z wih; + b).

A skip connection allows us to guide the neural net in the right direction and to model adjustments on top of the base
predictions, for example obtained via a GLM or GAM.

In the actuarial lingo this is called a Combined Actuarial Neural Network (CANN).

36 [44

Adding a skip connection in a neural network (cont.)

NN adjustments CANN (dots) vs. GAM (line)

e~ .
gggggggggg

37 | 44

Throwback to last year's seminar

Henckaerts et al. (2021) paper on Boosting insights in insurance tariff plans with tree-based
machine learning methods

o full algorithmic details of regression trees, bagging, random forests and gradient boosting
machines

s e with focus on claim frequency and severity modelling
ACTUARIAL JOLRNAL including interpretation tools (VIP, PDP, ICE, H-statistic)
e model comparison (GLMs, GAMs, trees, RFs, GBMs)

« managerial tools (e.g. loss ratio, discrimination power).

The paper comes with two notebooks, see examples tree-based paper and severity modelling.

The paper comes with an R package for fitting random forests on insurance data, see
distRforest.

38 [44

https://katrienantonio.github.io/publication/2020-boosting/
https://github.com/henckr/treeML
https://github.com/henckr/sevtree
https://github.com/henckr/distRforest

Ongoing research

« ANNs and CANNSs for both claim frequency and « bias regularization
severity (seperately), and then their

. o) . o ina GLM with canonical link >, y; = Zif(wi)
combination into a technical tariff

o how to restore this balance in a neural net?

o CANNs with input from (smartly engineered) GLM and

. « preprocessing steps of categorical inputs
GBM, with Prep g

o one-hot encoding: p levels into p binary inputs

o fixed input (say §{"™) used via skip connection o embedding layers: transform p levels into R?

o input used via skip, but flexible (weights are
trained) « interpretation tools

fied (w,,yf’")) — & (m(gz(in)) +gz(adj)) o partial dependence plots (PDPs)
o variable importance plots.

£ (2,5 = exp ([w1 wa]- [mg™) ggadj>]t+b)

39 [44

Ongoing research (cont.

Number of Claims — CANN Models

Test Performance all CANN Models

0.536 1

o
13
ey
X
1

0.532 A

0.530 1

Test Error (Poisson Loss)

0.528

Test Error (Gamma Loss)

1 2 3 4
Test Fold

Model

—— CANN model with GLM input

— = CANN model with GLM input (Trainable Output)
—— CANN model with GBM input

— = CANN model with GBM input (Trainable Output)

Average Claim Amount — CANN Models

2.36 1

2.32 1

2.28 1

2.24 1

1 2 3 4 5 6
Test Fold

Model

—— CANN model with GLM input

- = CANN model with GLM input (Trainable Output)
—— CANN model with GBM input

- = CANN model with GBM input (Trainable Output)

40 | 44

Ongoing research (cont.)

Meural Network with Embedding Layers CANN model with GLM input (trainable output layer) CANN model with GBM input (trainable output layer)

0.2001 0.2001 0.200 1

01751 01751 01751

0.150 0150 0.150
0.1251 0125 0.125+
0.100 0.100 4 0.100 A
0.075- ; ; ; 0.075- ; ; ; 0.0754 . . .
25 50 75 25 50 75 25 50 75
Age of Policyholder Age of Policyholder Age of Policyholder

Model Trained without Test Fold — 1 — 2 3 4 5 — B

4 | b4

Some first results (cont.)

Regular NN with Embedding CANN with GLM Input (Fixed) CANN with GBM Input (Fixed)

Y, RN
UL BT

R] i-"’l"“‘-‘
g

Prediction Effect

Prediction Effect Prediction Effect

010
0.09 K 0.08 0.12
010 PR 010 014
011 el YT 012 016
0.12 0.14 0.18
013 0.16 0.20
014 018 022

42 | 44

Conclusions

« Insights in the working principles behind (simple) neural networks, and their use for regression problems with

tabular data.

« However, first experiments indicate that such neural nets need the input of a base model (eg, a GLM or GBM)
to be competitive with these actuarial predictive models in terms of predictive accurary as well as interpretation of fitted

effects of variables.

e But, they have a competitive advantage when input data become more large and more complex (eg., v-a heat
maps collected with telematics devices, together with more traditional input features).

43 | 44

Thanks!

Thanks to the organizers, CNP Assurances and the chaire DIALog.

Slides created with the R package xaringan.

For more information please visit
O https://github.com/katrienantonio
&€ https://katrienantonio.github.io

& https://chaire-dialog.fr/

Ly | 44

https://github.com/yihui/xaringan
https://github.com/katrienantonio
https://katrienantonio.github.io/
https://chaire-dialog.fr/

