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World Weather Attribution: Paci�cWorld Weather Attribution: Paci�c

Northwest 2021 HeatwaveNorthwest 2021 Heatwave

"extremely rare (a 1 in 1000 year event)
in today's climate"

"virtually impossible without human-
caused climate change."

"at least 150 times rarer without
human-induced climate change."

"2°C hotter than it would have been [...]
at the beginning of the industrial
revolution (when global mean
temperatures were 1.2°C cooler than
today)."
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Attribution of climate changeAttribution of climate change

Source:
IPCC AR5, Chapter 10.
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AttributionAttribution

Source:
IPCC AR5, Chapter 10.

The process of evaluating the relative contributions of multiple causal factors to 
change or event with an assignment of statistical con�dence.
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Attribution of climate changeAttribution of climate change

AttributionAttribution

ConsequencesConsequences

Need to assess whether the observed changes are

consistent with the expected responses to external forcings

inconsistent with alternative explanations

Source:
IPCC AR5, Chapter 10.

The process of evaluating the relative contributions of multiple causal factors to 
change or event with an assignment of statistical con�dence.
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Attribution and causalityAttribution and causality

Assessing the causal effect of human activity through the notion of intervention
and counterfactuals

factual world counterfactual world

Source:
Hannart, A., J. Pearl, F.E. Otto, P. Naveau, and M. Ghil, 2016: Causal Counterfactual Theory for the Attribution of Weather and Climate-
Related Events. Bull. Amer. Meteor. Soc., 97, 99–110, https://doi.org/10.1175/BAMS-D-14-00034.1
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Importance of climate models in D&AImportance of climate models in D&A

Counterfactual

can never be observed in practice.

Intervention

requires to have an experimental
group and a control group, which is
not possible with only one Earth.

Solution ?

Use climate models to perform
controlled experiements.
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CMIP5 and temperature projectionsCMIP5 and temperature projections

Source:
Lehner et al. 2020. “Partitioning Climate Projection Uncertainty with Multiple Large Ensembles and CMIP5/6.” Earth System Dynamics
11 (2): 491–508. https://doi.org/10.5194/esd-11-491-2020.
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CMIP6 and temperature projectionsCMIP6 and temperature projections

Source:
Lehner et al. 2020. “Partitioning Climate Projection Uncertainty with Multiple Large Ensembles and CMIP5/6.” Earth System Dynamics
11 (2): 491–508. https://doi.org/10.5194/esd-11-491-2020.
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But we still need observations andBut we still need observations and

statistical modelsstatistical models

To check wether climate models are consistents with observations

To link climate models and observations

To infer quantities of interest

8 / 39



Attribution of Global Mean SurfaceAttribution of Global Mean Surface

Temperature TrendsTemperature Trends

Source:
IPCC AR5, FAQ 10.1, Figure 1 |
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Attribution of Global Mean SurfaceAttribution of Global Mean Surface

Temperature TrendsTemperature Trends

Source:
IPCC AR5, FAQ 10.1, Figure 1 |

Statistical Model

 is the climate state observed at a
given time, which is therefore impacted
by climate internal variability .

 is a response to forcing  simulated
by a climate model. It includes the
contribution of the internal variability

 simulated by the climate model.

= μ +Z∗ ∑N
i=n βiR

∗
i

Z = +Z∗ εZ
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Attribution of Extreme EventsAttribution of Extreme Events
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De�ning the event (only univariate)De�ning the event (only univariate)

1. De�ne the climate variable of interest.
e.g. temperature, precipitation, ...

2. De�ne the spatio-temporal aggregation.
e.g. maximum over Europe of 10-day temperature averages

3. De�ne the conditioning.
e.g. only during JJA, only for NAO+ circulation type, ...

4. De�ne the threshold
e.g. based on recent event

More on this:
Cattiaux, J. and A. Ribes, 2018: De�ning Single Extreme Weather Events in a Climate Perspective. Bull. Amer. Meteor. Soc., 99, 1557–
1568, https://doi.org/10.1175/BAMS-D-17-0281.1
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Case study: 2019 July Heatwave in FranceCase study: 2019 July Heatwave in France

Event de�nition:

Annual maxima of 3-day average temperature anomalies in France, i.e. [42N
- 51N] x [5W -10E] above +4.98 K.

Source:
Robin, Yoann ; Drouin, Agathe ; Soubeyroux, Jean-Michel ; Ribes, Aurélien ; Vautard, Robert. Comment attribuer une canicule au
changement climatique ?. La Météorologie, 115, 28-36, 2021.
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DataData

Simulations from 26 models from the Coupled Model Intercomparison Project
5 (CMIP5).

Data are extracted for the experiences:

historical, corresponding to the climate in the factual world (1850-2005)

rcp2.5, rcp8.5, corresponding to climate projections for the future of the
factual world(2006-2100)

Météo-France thermal index is used as observation. It corresponds to the
average of observations from 30 ground stations, showing data available
between 1947 and 2019
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Generalized Extreme Value distributionGeneralized Extreme Value distribution

The model focuses on the statistical behavior of

where , is a sequence of independent random variables having a
common distribution function 

Theorem
If there exist sequences of constants  and  such that

for a non-degenerate distribution function , then  is a member of the GEV
family

= max{ , . . . , },Mn X1 Xn

, . . . ,Xl Xn

F

{ > 0}an { }bn

P{( − )/ ≤ z} → G(z) as n → ∞Mn bn an

G G

G(z) = exp{− },[1 + ξ( )]
z − μ

σ

−1/ξ
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Bayesian ModelBayesian Model
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Bayesian ModelBayesian Model

Factual world
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Bayesian ModelBayesian Model

Factual world

Counterfactual world

Zt

CF
t

ϵIV

∼ GEV ( + , exp( + ), ξ)μ0 μ1C
F
t σ0 σ1C

F
t

= + +CNAT
t CANT

t ϵIV

∼ N (0, )σ2
IV

Xt

CCF
t

ϵIV

∼ GEV ( + , exp( + ), ξ)μ0 μ1C
CF
t σ0 σ1C

CF
t

= +CNAT
t ϵIV

∼ N (0, )σ2
IV

15 / 39



Bayesian ModelBayesian Model

Factual world

Counterfactual world

Prior distribution

We use the distribution of the CMIP5 models as prior
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GEV �tsGEV �ts
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Global Mean Surface Temperature asGlobal Mean Surface Temperature as

covariatecovariate
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Posterior: change in probabilityPosterior: change in probability
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Posterior: change in intensityPosterior: change in intensity
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Conclusions of the case studyConclusions of the case study

Source:
Robin, Yoann ; Drouin, Agathe ; Soubeyroux, Jean-Michel ; Ribes, Aurélien ; Vautard, Robert. Comment attribuer une canicule au
changement climatique ?. La Météorologie, 115, 28-36, 2021.

"currently the risk of occurrence of this
type of heat wave has been multiplied by
at least 10"

"In 2040 it will be multiplied by at least
20".

"in the best case (rcp2.5) we return to
the current situation in 2100"
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Let's take a few steps backLet's take a few steps back

Event attribution is about comparing two distributionsEvent attribution is about comparing two distributions

Counterfactual

Factual

Hard to do with observations...Hard to do with observations...

We never observe  for the counterfactual climate

Often lack of available data  for the factual climate

 Sample X with G(x) = P(X ≤ x)

 Sample Z with F(z) = P(Z ≤ z)

X

Z
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... and models have biases...... and models have biases...

Counterfactual world from model 

Factual world from model 

m

 Sample   with  (x) = P( ≤ x)X(m) G(m) X(m)

m

 Sample   with  (z) = P( ≤ z)Z(m) F (m) Z (m)
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Statistical bias correctionStatistical bias correction

Linking factual and counterfactual truth with theirLinking factual and counterfactual truth with their

numerical approximationsnumerical approximations

and

where  the inverse of , i.e. the quantile function. All variables are

assumed to be continuous.

X ( ∘ )( )=
d

G← G(m) X(m)

Z ( ∘ )( )=
d

F← F (m) Z (m)

(. )G← G
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A fundamental condition in D&AA fundamental condition in D&A

Climatological interpretationClimatological interpretation

The discrepancy between numerical model  and the true world stays the same
in the factual and counterfactual worlds.

AA :: ∘∘ == ∘∘FF ←← FF ((mm)) GG←← GG((mm))

m
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A fundamental condition in D&AA fundamental condition in D&A

Climatological interpretationClimatological interpretation

The discrepancy between numerical model  and the true world stays the same
in the factual and counterfactual worlds.

Mathematical consequence of Mathematical consequence of 

Under , it is possible to easily make relative comparisons of probabilities

AA :: ∘∘ == ∘∘FF ←← FF ((mm)) GG←← GG((mm))

m

AA

A
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Change of lenses: relative comparison ofChange of lenses: relative comparison of

probabilitiesprobabilities

Instead of studying exceedance probabilities like

we will estimate and interpret record probabilities like

and

where the usual threshold  has been replaced by
.

(t) = P( > u)  and  (t) = P( > u),p0 Xt p1 Zt

(t) = P( > max( , , … , ))p0,r Xt Xt−1 Xt−2 Xt−r+1

(t) = P( > max( , , … , ))p1,r Zt Xt−1 Xt−2 Xt−r+1

u
max( , , … , )Xt−1 Xt−2 Xt−r+1
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Records in the counterfactual world:Records in the counterfactual world:

((tt)) == PP(( >> maxmax(( ,, …… ,, ))))pp00,,rr XXtt XXtt−−11 XXtt−−rr++11
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Records in the counterfactual world:Records in the counterfactual world:

((tt)) == PP(( >> maxmax(( ,, …… ,, ))))pp00,,rr XXtt XXtt−−11 XXtt−−rr++11
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Exchangeable random sequencesExchangeable random sequences

No need to view data to compute this probability of record: universal yardstick

This equality is relative and does not depend on the marginal type: bypassing
bias-correction

P( > max( , , … , )) =Xt Xt−1 Xt−2 Xt−r+1
1

r
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Can a factual realization be a record in the counterfactualCan a factual realization be a record in the counterfactual

world?world?

((tt)) == PP(( >> maxmax(( ,, …… ,, ))))pp11,,rr ZZtt XXtt−−11 XXtt−−rr++11
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Under exchangeability of Under exchangeability of  and and

assumption assumption 

Under , there is no need to correct Model . Huge gain!!!
We can just average estimates from the different models that respect
assumption ,

XXtt

AA

(t) = (t .p1,r p1,r )(m)

A m

A

30 / 39



Under exchangeability of Under exchangeability of  and and

assumption assumption 

Under , there is no need to correct Model . Huge gain!!!
We can just average estimates from the different models that respect
assumption ,

Indeed,

XXtt
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A m
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Distribution of Distribution of  when  when  describes describes

annual maxima and annual maxima and  too? too?

WW == −− loglogGG((ZZ)) GG

ZZ
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Distribution of Distribution of  when  when  describes describes

annual maxima and annual maxima and  too? too?

If  and  such that

then

with  and .

WW == −− loglogGG((ZZ)) GG

ZZ

X ∼ GEV ( , , )μX σX ξX Z ∼ GEV ( , , )μZ σZ ξZ

− = − ,μX

σX

ξX
μZ

σZ

ξZ

W = − logG(Z) ∼ Weibull(k,λ)

k = /ξX ξZ λ = (k × / )σZ σX
−1/ξX 31 / 39



Estimation algorithm of Estimation algorithm of 

Under Weibull assumption,

((tt))pp11,,rr

(t) = exp(−(r − 1) (− log x ) dxp1,r ∫
1

0

λt )1/kt
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Estimation algorithm of Estimation algorithm of 

Under Weibull assumption,

Estimation algorithm:

- Step 1: ,

((tt))pp11,,rr

(t) = exp(−(r − 1) (− log x ) dxp1,r ∫
1

0

λt )1/kt

∀ t

(t) = G( ) (t) =p1,2̂ ∑
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G
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Estimation algorithm of Estimation algorithm of 

Under Weibull assumption,

Estimation algorithm:

- Step 1: ,

- Step 2: for a chosen ,

((tt))pp11,,rr

(t) = exp(−(r − 1) (− log x ) dxp1,r ∫
1

0

λt )1/kt

∀ t

(t) = G( ) (t) =p1,2̂ ∑
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Estimation algorithm of Estimation algorithm of 

Under Weibull assumption,

Estimation algorithm:

- Step 1: ,

- Step 2: for a chosen ,

- Step 3:

((tt))pp11,,rr

(t) = exp(−(r − 1) (− log x ) dxp1,r ∫
1

0

λt )1/kt

∀ t

(t) = G( ) (t) =p1,2̂ ∑
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(t) = exp(−2 (− log x ) dx .p1,3̂ ∫ 1
0 λ̂t )1/k̂t

k̂t λ̂t

(t) ← exp(−(r − 1) (− log x ) dxp1,r̂ ∫
1

0

λ̂t )1/k̂t
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Practical factsPractical facts

GEV distributions are never �tted in this study

The Weibull goodness of �t can be checked

We don't need to observe a record to compute a record probability

Extrapolation can be done, i.e. take  larger than the sample sizer
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Yearly maxima of daily precipitation atYearly maxima of daily precipitation at

Richmond grid-point (IPSL, SSP585)Richmond grid-point (IPSL, SSP585)
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Yearly maxima of daily precipitation (IPSL,Yearly maxima of daily precipitation (IPSL,

SSS85)SSS85)
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How to check How to check 

If we assume that there is a period of time, , when the factual climate is like the
counterfactual climate , i.e.

then, for the period , it implies that under 

and that

Test for equality of distribution between samples  and

.

AA
T

G for t ∈ TFt =
d

T A

∘ = ∘ ⟹ ∘ = ∘F← F (m) G← G(m) F← F (m) F← G(m)

⟹ =F (m) G(m)

= 1/2 for t ∈ Tp
(m)
1,t

{ : t ∈ T}X
(m)
t

{ : t ∈ T}Z
(m)
t
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How to check How to check 

If we assume that there is a period of time, , when the factual climate is like the
counterfactual climate , i.e.

then, for the period , it implies that under 

and that

Test for equality of distribution between samples  and

.

How to use the observations in the setup ?

AA
T

G for t ∈ TFt =
d

T A

∘ = ∘ ⟹ ∘ = ∘F← F (m) G← G(m) F← F (m) F← G(m)
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ConclusionConclusion
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Uncertainties in observations and climate models: using only one source of
data may not give robust results.
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ConclusionConclusion

Uncertainties in observations and climate models: using only one source of
data may not give robust results.

How to combine models and observations depends on assumptions we make
about the relationship between models and observations, e.g.:

for threshold exceedances, climate simulations are used as a prior
distrbution,

for records, we use assumption  that
simpli�es the inference.

A : ∘ = ∘F← F (m) G← G(m)
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ConclusionConclusion

Uncertainties in observations and climate models: using only one source of
data may not give robust results.

How to combine models and observations depends on assumptions we make
about the relationship between models and observations, e.g.:

for threshold exceedances, climate simulations are used as a prior
distrbution,

for records, we use assumption  that
simpli�es the inference.

Extreme Event Attribution studies are limited by the quality of the data, e.g.
observations availability and homogeneity or the resolution of climat models.

A : ∘ = ∘F← F (m) G← G(m)
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Some limits of the methods presentedSome limits of the methods presented

todaytoday

Only for univariate yearly time-series.

Further developments are needed for multivariate or
coumpounds events, e.g. temporal and spatial dependencies.

Only tackle the climate hazard part of the risk.

Not usable for impact models that require time-series as
inputs.
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Thank you for your attention!Thank you for your attention!

Questions, comments, suggestions?Questions, comments, suggestions?
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